

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 164
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

DETECTION OF SOFTWARE
REFACTORABILITY THROUGH

SOFTWARE CLONES WITH DIFFRENT
ALGORITHMS

Ritika Rani1,Pooja sachdeva2
Department of computer science & engineering himalayan group of professional institutions Kal Amb,

Distt- Sirmour (India).

ritu.bagga123@gmail.com1 , Poojasachdeva1886@gmail.com2

Abstract- In software programs if the code is similar to each other or we can say if the code is copied then it is called clones, we can
also used the term of replication or redundancy for it. Every researcher have purposed a different definitions of clones according to him
.we also use the term of duplicate code for it.
 Through the occurrence of clones the program efficiency is to be decreases. it can also effects on program cost and maintenance .
The code redundancy can be solved by some techniques. we can separately functionalized the clones into a single unit.
Several studies are to be defined for the prevention and detection of a code clone. We have also need to prevent a unification and
refactoring of a software clones. And sometimes programmers need to manually understand the clones by the use of clone detection
tools, decide how they should be refectories. This obvious gap between the clone detection tools and the clone analysis tools,
makes the refactoring and the programmers refactoring the duplicate codes. In this thesis, an approach for the refactoring through
different algorithms for unification In software replication of code or we can say clone that have t be overcomes the limitations of
previous methods. This technique is used to prevent and solve the raised mismatched between the clones. it can also find a
mapping between the similar statements. We have also defined preconditions in particular order to explain whether the
duplicated code safely refectories to manage the behavior of existing code.

—————————— ——————————

Introduction
In This thesis presents a methods for removing the unification and refactoring through
different algorithms in java programming. And also used a art of state techniques. The
proposed approach takes as entire program or parts of a the codes that have been detected by a
specific tool. And a l s o determines whether the clones. And try to fully refectories. The three
main steps involved in the process are the following. In the first step, it finds the structures of
control dependency within the clones. And now in second step, prevent the matched statements
also used to remove the mismatching at the same step. And in the last step, again define the
mismatched conditions again and also define whether the program behavior is to be
changed or not.
In this thesis the technique is to be only used for a first three types of clones. The technique is
compared with Codepro , and a art of state tool is to be used. The same process is to be carried
out until the fair results. And the results shows that the our technique is more efficient then codepro
tool in java programming .

Related Work
The extraction of code clone differences is an important step toward the process of refactoring
code duplicates. This technique is not only used for the detection or prevention of software clones

IJSER

http://www.ijser.org/
mailto:ritu.bagga123@gmail.com1
mailto:Poojasachdeva1886@gmail.com

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 165
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

it can also used for a evolution of some another software applications. data copy detection, source
code retrieval. The Program Dependence Graphs and their applications, the next two
current approaches for code matching and discusses the art of state techniques toward code
clone refactoring. W e w i l l a n a l y s i s t h e m i s m a t c h i n g i s n o t b e e x p l o r e d a n d n o t
t o b e o p t i m a l and also face some scalability problems.

Clone Refactoring Techniques

Balazinska et al.defines the code clone differences and perform advanced code clone analysis
and provide the a solution to programmer to solve refactoring. .I n t h i s technique compare
code fragments based on the Pattern Matching algorithm.
The proposed algorithm aligns syntactically unstructured entities and finds the distance of
the two code fragments. The solution is to be used to minimize the number of tokens is to be
inserted or deleted to change the code fragments into another fragment . However, this overall
distance cannot be guaranteed as minimal as it tries to find optimal values at node level
without considering the hierarchical structural differences at a higher level. The differences
are expressed as programming language entities easily understandable by a programmer.
This is done by projecting the tokens forming the differences onto the corresponding AST
elements. The differences are also categorized based on the role in refactoring. The
categories are:

1. superficial differences such as names of local variables which do not affect the behavior
of methods

2. differences which affect the methods such as return value, access modifiers, thrown
exceptions etc.

3. differences affecting the types of parameters

4. all other differences.
Clone Unification
The proposed technique for the unification of clones in order to refactor them comprises three
major steps as follows:

1. Control Structure Matching: The control structure of the code fragments is
extracted into trees called Control Dependence Trees and they are matched for identifying
potential refactoring candidates as well as to determine valid clone regions.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 166
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

2. Program Dependence Graph Matching: The output of this phase is an optimal
match of the PDGs corresponding to the matched subtrees from the previous step.

3. Checking Preconditions: A check is done against a set of predetermined conditions
to ensure that the code behavior is preserved and to determine whether it is safe to refactor.

Figure : An overview of the proposed technique

Clone Refactoring
After the completion of the process, we need to define where the duplicated code can be
safely extracted into a common method. According to Opdyke , each refactoring should be
set with a set of preconditions, which monitor that the where the code is to be refectories. If any
precondition is to be failed or not fully refectories the code the the program behavior is to be totally
changed..

Conclusion and Future Work
Thi is a first step of research goal. To this end, we developed a clone refactoring technique
through different algorithms that overcomes some of the limitations of previous
approaches. The important and main feature of this thesis is to be defines the much
more differences and detect them and also define through control dependency of
code also map the difference and define where is to be mismatched and remove this miss matched .
the one more main aspect of this thesis is to be define where is to clone and define if we remove the
clone then the program behavior is to be changed or still same and define where to change is
required . And currently defines the study of refactorability of clones detected from different
clone detection tools such as Codepro , PMD.
In the evaluation of our approach, we compare the Codepro tool for the refactoring the
Type-2 clones,.and our technique is to be more efficient then the codepro. And the another code
clone is not related to java programs but also it can be revalorized directly.
As future work, we can detect some new and additional techniques for type 3 and type 4 clones.To
accomplish this theme first we need to specify a particular base mark technique for type3 and type4 and then using
art of state tools. And also define the decision of mismatching and compare the result with some
new refactoring removing tool with some graph dependency notations.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 167
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

References
[1] Mens, Tom, and Tom Tourwé. "A survey of software refactoring." Software Engineering, IEEE
Transactions on 30.2 (2004): 126-139.

[2] M. Fowler: ―Refactoring. Improving the Design of Existing Code‖, Addison- Wesley, 1999
[3] Nikolaos Tsantalis, DavoodMazinanian,and Giri Panamoottil Krishnan, ―Assessing the
Refactorability of Software Clones,‖ in Proc. IEEE Transactionson software engineering, vol.41,
no.11, November 2015.
[4] C. K. Roy, J. R. Cordy, and R. Koschke, ―Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach,‖ Sci. ComputProgramm., vol. 74, no. 7, pp. 470–495,
2009.
[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison and evaluation of clone
detection tools, Transactions on Software Engineering 33 (9) (2007) 577_591.
[6] Arcelli Fontana, Francesca, et al. "Software clone detection and refactoring."ISRNSoftware
Engineering 2013.
[7] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, ―Do code clones matter‖ in Proc.
31st Int. Conf. Softw. Eng., 2009,pp. 485–495.
[8] Roy C.K. and Cordy J.R., ―A Survey on Software Clone Detection Research‖,Queen’s School
of Computing, Technical Report No.2007-541, vol.115, September 2007.
[9] C. Roy, M. Zibran, and R. Koschke,
―The vision of software clone management:(Past, present, and future (keynote paper),‖ in Proc.
IEEE Conf. Softw.Maintenance, Reeng. Reverse Eng., Softw. Evol.Week, 2014, pp. 18–33.
[10] Lozano and M. Wermelinger,―Assessing the effect of clones onchangeability,‖ in Proc. 24th
IEEE Int. onf. Softw. Maintenance,2008, pp. 227–236.
[11] L. Jiang, G. Misherghi, Z. Su, S. Glondu, DECKARD: Scalable and accurate tree-based
detection of code clones, in: Proceedings of the 29th InternationalConference on Software
Engineering, ICSE 2007, 2007, pp. 96_105.
[12] Z. Li, S. Lu, S. Myagmar, Y. Zhou, CP-Miner: Finding copy-paste and related bugs in large-
scale software code, IEEE Transactions on SoftwareEngineering 32 (3) (2006) 176_192.
[13] C.K. Roy, J.R. Cordy, NICAD: Accurate detection of near-miss intentional clones using
flexible pretty-printing and code normalization, in: Proceedings.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 168
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

IJSER

http://www.ijser.org/

